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Impaired insulin and incretin secretion underlie abnormal
glucose tolerance (AGT) in pancreatic insufficient cystic
fibrosis (PI-CF). Whether the incretin hormones glucagon-
like peptide-1 (GLP-1) and glucose-dependent insulino-
tropic polypeptide (GIP) can enhance pancreatic islet
function in cystic fibrosis (CF) is not known.We studied 32
adults with PI-CF and AGT randomized to receive either
GLP-1 (n = 16) or GIP (n = 16) during glucose-potentiated
arginine (GPA) testing of islet function on two occasions,
with either incretin or placebo infused, in a randomized,
double-blind, cross-over fashion. Another four adults with
PI-CF and normal glucose tolerance (NGT) and four
matched control participants without CF underwent simi-
lar assessment with GIP. In PI-CF with AGT, GLP-1 sub-
stantially augmented second-phase insulin secretion but
without effect on the acute insulin response to GPA or the
proinsulin secretory ratio (PISR), while GIP infusion did
not enhance second-phase or GPA-induced insulin secre-
tion but increased the PISR. GIP also did not enhance sec-
ond-phase insulin in PI-CF with NGT but did so markedly
in control participants without CF controls. These data in-
dicate that GLP-1, but not GIP, augments glucose-depen-
dent insulin secretion in PI-CF, supporting the likelihood
that GLP-1 agonists could have therapeutic benefit in this

population. Understanding loss of GIP’s insulinotropic ac-
tion in PI-CF may lead to novel insights into diabetes
pathogenesis.

Cystic fibrosis (CF) is caused by autosomal recessive inheri-
tance of loss-of-function mutations affecting the gene encod-
ing the cystic fibrosis transmembrane conductance regulator
(CFTR), an anion channel important to bicarbonate and chlo-
ride transport across epithelial membranes. Loss of CFTR
function results in multiorgan dysfunction that typically first
manifests as exocrine pancreatic insufficiency and, later, im-
paired respiratory secretion clearance and pulmonary inflam-
mation leading to sinopulmonary infections, deterioration
in lung function, and ultimately, respiratory failure. Cystic
fibrosis–related diabetes (CFRD) develops in �40% of indi-
viduals with CF by age 30 years and is associated with up to
sixfold greater mortality (1). CFRD primarily develops in
individuals with pancreatic-insufficient CF (PI-CF) (2) due
to progressive loss of meal-related insulin secretion (3) and
is associated with deterioration in nutritional status and
pulmonary function that contribute to the increased mor-
tality risk (4).
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Exocrine pancreatic insufficiency and related digestive ab-
normalities may diminish the actions of the enteroinsular
axis, a key mechanism mediating prandial insulin secretion
(5,6). Impaired nutrient digestion leads to reduced secretion
of the incretin hormones glucagon-like peptide-1 (GLP-1)
and glucose-dependent insulinotropic polypeptide (GIP) from
intestinal L and K cells, respectively (5,6). GLP-1 and GIP
both augment insulin production and glucose-dependent in-
sulin secretion by pancreatic islet b-cells, with reciprocal ef-
fects on islet a-cells (i.e., GLP-1 inhibits and GIP stimulates
glucagon secretion) (7). Optimization of pancreatic enzyme
replacement improves GLP-1 and GIP responses to nutrient
ingestion in CF and improves, but does not normalize, post-
prandial insulin secretion and glucose tolerance (8). However,
pancreatic enzyme replacement does not mimic normal exo-
crine pancreatic physiology, and compliance with pancreatic
enzyme replacement is unlikely optimal over a lifetime of
multiple daily meal exposures and still does not normalize
GIP secretion (8,9) that is more dependent than GLP-1 secre-
tion on fat digestion.

Whether the insulinotropic actions of GLP-1 and GIP are
also compromised in individuals with PI-CF is unknown. In
type 2 diabetes, b-cell responsiveness to GLP-1 is preserved,
but b-cell responsiveness to GIP is lost (10,11), presumably
due to hyperglycemia-mediated downregulation of GIP re-
ceptor expression (12). Importantly, individuals without CF
but with impaired glucose tolerance, although not overt dia-
betes, maintain b-cell responsiveness to GIP (13). Because
functional CFTR is important for islet b-cell, and possibly
a-cell, function (14), understanding whether loss of CFTR
function may affect islet-cell responsiveness to incretin hor-
mones in PI-CF is important to determine whether the in-
cretin system may be an effective therapeutic target for
CFRD prevention or treatment. This study was designed to
investigate pancreatic islet b- and a-cell responsiveness to
acute administration of either GLP-1 or GIP in PI-CF.

RESEARCH DESIGN AND METHODS

Participants
All participants were aged $18 years and had completed a
75-g oral glucose tolerance test (OGTT) within 6 months
prior to enrollment. CF diagnosis was confirmed by CFTR
mutation analysis or positive sweat test per the Cystic Fi-
brosis Foundation diagnostic criteria (15), and pancreatic
insufficiency was confirmed by requirement for pancreatic
enzyme supplementation. The initial group of participants
studied had PI-CF with abnormal glucose tolerance (AGT)
defined by an OGTT as either early glucose intolerance
(1-h glucose $155 mg/dL, 2-h glucose <140 mg/dL), im-
paired glucose tolerance (2-h glucose $140 mg/dL and
<200 mg/dL), or CFRD (2-h glucose $200mg/dL or previ-
ously confirmed diagnosis) without fasting hyperglycemia
(fasting glucose <126 mg/dL) that we have previously as-
sociated with impaired b-cell function (3). Individuals hav-
ing CFRD with fasting hyperglycemia were excluded to

ensure participants maintained a sufficient b-cell secretory
reserve that could respond to stimulation.

To control for possible effects of hyperglycemia affecting
GIP action, additional participants with PI-CF and matched
control participants without CF and with normal glucose
tolerance (NGT), defined by 1-h glucose <155 mg/dL and
2-h glucose <140 mg/dL, were also studied. Those with
PI-CF and NGT were further required to harbor at least
one class I, II, or III mutation, and for class III mutations,
participants were excluded if receiving they ivacaftor alone
or as part of combination CFTR modulator treatment. Ad-
ditional protocol details are available at ClinicalTrials.gov
(identifier: NCT01851694).

The study was approved by the institutional review
boards of the University of Pennsylvania and the Children’s
Hospital of Philadelphia and conducted under an investiga-
tional new drug application with the U.S. Food and Drug
Administration (IND 117381). All participants provided
written informed consent to participate.

Study Design
Eligible patients with PI-CF and AGT were randomly as-
signed to participate in either the GLP-1 or GIP group (Fig.
1A), with randomization stratified by glucose tolerance
(early glucose intolerance, impaired glucose tolerance, or
CFRD). All participants completed a mixed-meal tolerance
test (16), as previously described (9), and, in a randomized,
double-blind, cross-over fashion, underwent glucose-poten-
tiated arginine (GPA) testing of islet b- and a-cell function
on two occasions with either incretin or placebo infused.
Those with PI-CF and NGT and the matched control partic-
ipants without CF underwent randomized, double-blind,
cross-over investigation with GIP only (Fig. 1B).

Incretin Administration
Lypophilized GLP-1 (7–36 amide) or GIP (1–42 amide;
Bachem AG, Bubendorf, Switzerland) was reconstituted in
0.9% saline containing 0.25% human serum albumin as a
1 mg/mL solution the evening before study. After a 12-h over-
night fast, baseline blood samples were taken at 35 and
30 min before incretin administration (i.e., t = �35 min and
t = �30 min, respectively). Then, incretin or matching pla-
cebo infusion was initiated, with the alternate condition per-
formed at a subsequent visit between 1 week and 1 month
apart. GLP-1 was infused at a rate of 1.5 pmol/kg/min, with
a double infusion rate for the first 10 min, from t = �30 min
until the completion of blood sampling at t = 60 min
(Fig. 1C). This rate of administration has been demon-
strated to produce supraphysiologic concentrations of
GLP-1 that augment insulin responses in individuals
without CF but with type 2 diabetes (17–19). GIP was in-
fused at a rate of 4 pmol/kg/min, with a double infusion
rate for the first 10 min, from t = �30 min until the
completion of blood sampling at t = 60 min (Fig. 1D–F).
This rate of administration has been demonstrated to pro-
duce supraphysiologic concentrations of GIP that augment
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glucose-dependent insulin secretion in individuals without
CF but with impaired glucose tolerance (13).

GPA Test
The GPA test avoids enteric stimulation and so was used
during infusion of GLP-1 or GIP and placebo to indepen-
dently assess the effect of each incretin hormone on
glucose-dependent islet b- and a-cell function (20). Presti-
mulus blood samples were taken at 5 and 1 min before the
injection of 5 g of 10% arginine over a 1-min period start-
ing at t = 0. Additional blood samples were collected at 2,
3, 4, and 5 min after injection. Beginning at t = 10 min, a
hyperglycemic clamp technique (21) using a variable rate
infusion of 20% glucose was performed to achieve a plasma
glucose concentration of �230 mg/dL. Blood samples were
taken every 5 min, centrifuged, and measured in duplicate
at bedside with an automated glucose analyzer (YSI 2300;
Yellow Springs Instruments, Yellow Springs, OH) to adjust
the glucose infusion rate and achieve the desired plasma

glucose concentration. After 45 min of glucose infusion (at
t = 55 min), a 5-g arginine pulse was injected again with
identical blood sampling. Subsequently, the infusion of in-
cretin or placebo was stopped. Following a 2-h period
without glucose infusion to allow plasma glucose levels
to return to baseline, a hyperglycemic clamp was per-
formed to achieve a plasma glucose concentration of
�340 mg/dL. After 45 min of glucose infusion, a 5-g
arginine pulse was injected again with identical blood
sampling.

Biochemical Analysis
Blood samples were collected into tubes on ice containing
EDTA and a protease inhibitor cocktail, and for the mixed-
meal tolerance test, DPP4 inhibitor (Sigma-Aldrich, St. Louis,
MO). Samples were centrifuged at 4�C, separated, and fro-
zen at �80�C for subsequent analysis of insulin, C-peptide,
glucagon, proinsulin, active GLP-1, total GIP, and free fatty
acids, as previously described (9).

Assessed for eligibility (n = 40)

Pancrea�c insufficient cys�c fibrosis
with abnormal glucose tolerance

Pancrea�c insufficient cys�c fibrosis
with normal glucose tolerance

Non-cys�c fibrosis controls
with normal glucose tolerance

Assessed for eligibility (n = 9)Assessed for eligibility (n = 4)

Randomized (n = 33)

GLP-1 interven�on (n = 17) GIP interven�on (n = 16) GIP interven�on (n = 4) GIP interven�on (n = 5)

GLP-1 
infusion 
(n = 16)

Placebo 
infusion 
(n = 16)

GIP 
infusion 
(n = 16)

Placebo 
infusion 
(n = 16)

GIP 
infusion 
(n = 4)

Placebo 
infusion 
(n = 4)

GIP 
infusion 
(n = 5)

Placebo 
infusion 
(n = 4)

BA

Analyzed (n = 16) Analyzed (n = 16) Analyzed (n = 4) Analyzed (n = 4)

1 could not 
establish IV access

1 lost to 
follow-up

3 did not complete screening 
assessments; 4 had normal OGTT

2 lost to 
follow-up; 2 had 
abnormal OGTT
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Figure 1—Study design and participant flow. A: Eligible participants with PI-CF and AGT were randomized to receive either intervention
with either GLP-1 or GIP and underwent GPA testing of islet function on two occasions with either incretin or placebo infused in a random-
ized, double-blind, cross-over fashion. B: Eligible participants with PI-CF and NGT and matched control participants without CF received
intervention with GIP and underwent GPA testing with either GIP or placebo infused in a randomized, double-blind, cross-over fashion.
Plasma levels of active GLP-1 during infusion of GLP-1 or placebo in participants with PI-CF and AGT (C), and plasma levels of GIP during
infusion of GIP or placebo in participants with PI-CF and AGT (D), in participants with PI-CF and NGT (E), and in control participants with-
out CF (F). Data are reported as mean ± SE. IV, intravenous.
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Calculations
Second-phase glucose, insulin, and glucagon levels were as-
sessed from the prestimulus levels between 40 and 45 min
of the �230 mg/dL hyperglycemic clamp. Intravenous glu-
cose tolerance was assessed from the glucose infusion rate
(M) required during the �230 mg/dL hyperglycemic clamp.
Acute insulin, C-peptide, proinsulin, and glucagon responses
to arginine (AIRarg, ACRarg, APRarg, and AGRarg, respectively)
were determined as the difference in mean of the 2-, 3-, 4-,
and 5-min values and the mean of the prestimulus values
(21). Glucose potentiation of arginine-induced insulin,
C-peptide, and proinsulin (respectively, AIRpot, ACRpot,
APRpot) release, and glucose-inhibition of arginine-induced
glucagon (AGRinh) release were determined from the acute
responses during the �230 mg/dL glucose clamp. Acute re-
sponses during the �340 mg/dL glucose clamp allowed for
determination of the maximum arginine-induced insulin
(AIRmax), C-peptide, and proinsulin release, and of the mini-
mum arginine-induced glucagon release (22). The proinsulin
secretory ratio (PISR) in response to each injection to argi-
nine was calculated as the molar ratio of the acute proinsu-
lin and C-peptide response to arginine (9).

Statistical Analysis
Comparisons were made using the nonparametric Wil-
coxon signed rank test for paired data and the Mann-
Whitney U test for independent samples. The primary out-
come was second-phase insulin concentration during the
230 mg/dL hyperglycemic clamp. Mixed-effects models were
used to test the relative influence of either GLP-1 or GIP
versus placebo infusions on the primary and multiple sec-
ondary outcomes in PI-CF with AGT groups using time-
by-condition, group-by-condition, and time-by-condition-by-
group interactions (23). A similar approach was used to
assess the relative effect of GIP versus placebo infusion for
the group of patients with PI-CF and NGT and control
group without CF (24). Analyses were performed using
Stata, version 15 (StataCorp LP, College Station, TX). Data
are presented as mean ± SD or difference estimates from
the mixed-effects models with 95% CIs. Significance was
considered at P < 0.05 (two-tailed).

Data and Resource Availability
The datasets generated during this study are available
from the corresponding authors upon reasonable request.

RESULTS

Participant Characteristics
A total of 33 patients with PI-CF and AGT were randomized
with 17 enrolled in the GLP-1 group and 16 enrolled in the
GIP group; 1 patient randomized to GLP-1 did not complete
either GPA test because of insufficient intravenous access
(Fig. 1A). The GLP-1 and GIP groups were comparable in
sex, age, BMI, HbA1c, pulmonary function, and glucose toler-
ance values (Table 1; Supplementary Fig. 1). Six patients
randomized to the GLP-1 group were receiving CFTR

modulator therapy, five were receiving ivacaftor, and one
was receiving lumacaftor and ivacaftor; one patient ran-
domized to the GIP group was receiving lumacaftor and
ivacaftor.

Four patients with PI-CF and NGT and five in the non-
CF control group were subsequently enrolled for GIP inter-
vention; one participant in the non-CF control group moved
from the region after completing just one GPA test (Fig.
1B). The PI-CF and non-CF groups with NGT were compara-
ble in sex, age, BMI, HbA1c, and glucose tolerance values
(Table 1). All four patients with PI-CF and NGT were receiv-
ing combination CFTR modulator therapy, two were receiv-
ing tezacaftor and ivacaftor, one was receiving lumacaftor
and ivacaftor, and one was receiving elexacaftor, tezacaftor,
and ivacaftor.

Responses to GLP-1 and GIP in PI-CF With AGT
Active GLP-1 concentrations increased from 5.4 ± 1.3 to
62.0 ± 3.5 pmol/L during GLP-1 infusion and remained un-
changed during placebo infusion (Fig. 1C). GIP concentra-
tions increased from 46.6 ± 6.2 to 1,416.3 ± 103.6 pg/mL
during GIP infusion and remained unchanged during pla-
cebo infusion (Fig. 1D).

Basal glucose concentrations decreased by more after
30 min of GLP-1 versus placebo infusion than after
30 min of GIP versus placebo infusion (�8.4 [95% CI
�4.7 to �12.2] mg/dL; P < 0.001) (Fig. 2, A and B). Dur-
ing the �230 mg/dL hyperglycemic clamp, plasma glucose
level was lower with GLP-1 versus placebo infusion (208 ±
16 vs. 225 ± 12 mg/dL; P < 0.001) despite M being
greater with GLP-1 versus placebo infusion (11.4 ± 2.1 vs.
9.0 ± 1.5 mg/kg/min; P < 0.001), whereas the plasma glu-
cose level was not different with GIP versus placebo infu-
sion (219 ± 13 vs. 225 ± 9 mg/dL), with no difference in
M (9.1 ± 1.5 vs. 8.8 ± 1.4 mg/kg/min). The increase in M
during the �230 mg/dL hyperglycemic clamp with GLP-1
versus placebo treatment was greater than with GIP ver-
sus placebo (12.2 [95% CI 1.1–3.2] mg/kg/min; P <
0.001) (Fig. 2, A and B).

Basal insulin tended to increase more after 30 min of
GLP-1 versus placebo infusion than after 30 min of GIP ver-
sus placebo infusion (12.8 [95% CI �0.08 to 5.7] mU/mL;
P = 0.057) (Fig. 2, C and D). During the �230 mg/dL hy-
perglycemic clamp, the difference in second-phase insu-
lin concentrations during GLP-1 versus placebo infusion
was markedly greater than during GIP versus placebo in-
fusion (138.1 [95% CI 23.8–52.4] mU/mL; P < 0.001)
(Fig. 2, C and D), with parallel findings for second-phase
C-peptide (12.66 [95% CI 1.56–3.76] ng/mL; P <
0.001). Similar results were obtained when excluding the
seven participants (n = 6 in the GLP-1 group and 1 in
the GIP group) receiving CFTR modulator therapy.

Basal glucagon concentrations decreased after 30 min
of GLP-1 versus placebo infusion and increased after
30 min of GIP versus placebo infusion, which differed be-
tween the GLP-1 and GIP groups (�9.6 [95% CI �14.3 to
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�4.8] pg/mL; P < 0.001) (Fig. 2, E and F). During the
�230 mg/dL hyperglycemic clamp, glucagon concentra-
tions were similarly suppressed during incretin and pla-
cebo infusions in both the GLP-1 and GIP groups.

Changes in acute insulin, C-peptide, glucagon, and proin-
sulin responses with incretin versus placebo infusion were
not different between the GLP-1 and GIP groups (Table 2;
Supplementary Fig. 2; Fig. 3A–D). The PISR under the
�230 mg/dL hyperglycemic clamp condition was notably
lower with GLP-1 versus placebo infusion when compared
with GIP versus placebo intervention (�1.18% [95% CI
�2.17 to �0.19%]; P = 0.019) (Table 2; Fig. 3, E and F).
The GLP-1–induced change in second-phase insulin concen-
trations was related to the underlying b-cell secretory ca-
pacity (Supplementary Fig. 3), whether estimated by the
AIRpot (r = 0.54; P = 0.034) or AIRmax (r = 0.50; P = 0.046).

Responses to GIP in PI-CF and Matched Controls
With NGT
GIP concentrations increased similarly with GIP versus pla-
cebo infusion in the PI-CF and non-CF groups (1852.6 ±
225.6 vs. 11,193.3 ± 253.3 pg/mL, respectively) (Fig. 1, E
and F).

Basal glucose decreased by less after 30 min of GIP ver-
sus placebo infusion in the PI-CF group than in the non-
CF group (17.5 mg/dL [95% CI 1.9–13.2] mg/dL; P =
0.009) (Fig. 4, A and B). During the �230 mg/dL hypergly-
cemic clamp, plasma glucose concentrations were not dif-
ferent with GIP versus placebo infusion in patients with
PI-CF (222 ± 12 vs. 228 ± 7 mg/dL, respectively) and those
without CF (171 ± 24 vs. 206 ± 29 mg/dL, respectively).
M was similar with GIP versus placebo infusion in the PI-
CF group (9.7 ± 1.7 vs. 9.7 ± 1.4 mg/kg/min, respectively)
(Fig. 4A) and was higher with GIP infusion than the pla-
cebo infusion in the non-CF group (respectively, 15.9 ± 3.2
vs. 9.7 ± 1.7 mg/kg/min and 16.19 [95% CI 7.6–11.9;

P < 0.001) (Fig. 4B). The absent difference in M in the
PI-CF group compared with the increase in M in the non-
CF group translated into an M that was greater with GIP
relative to placebo infusion in participants without CF ver-
sus those with PI-CF (16.2 mg/kg/min [95% CI 2.6–9.7];
P = 0.001).

Basal insulin level remained unchanged after 30 min of
GIP versus placebo infusion in both PI-CF and non-CF
groups. During the �230 mg/dL hyperglycemic clamp,
augmentation of second-phase insulin concentrations with
GIP versus placebo infusion was markedly less in partici-
pants with PI-CF than in those without CF (�78.4 mU/mL
[95%CI �146.9 to �9.9]; P = 0.025) (Fig. 4, C and D),
with similar results for second-phase C-peptide (�6.23
[95% CI �8.1 to �4.37] ng/mL; P < 0.001).

The change in glucagon level after 30 min of GIP versus
placebo was not different between the PI-CF and non-CF
groups. During the �230 mg/dL hyperglycemic clamp, glu-
cagon concentrations were similarly suppressed during GIP
and placebo infusions in both PI-CF and non-CF groups
(Fig. 4, E and F).

Neither AIRarg nor ACRarg was different during GIP ver-
sus placebo in patients with PI-CF (Table 3; Supplementary
Fig. 4A; Fig. 5A) and both were lower during GIP versus
placebo infusion in the non-CF group (P # 0.02 for both)
(Table 3; Supplementary Fig. 4B; Fig. 5B), an effect ex-
plained by lower fasting glucose level and so a priming
stimulus for arginine during GIP infusion in control partici-
pants. The change in AIRarg between GIP and placebo infu-
sion was less in the PI-CF group than the non-CF group
(�2.1 ± 9.0 vs. �21.7 ± 8.8 mU/mL, respectively; P = 0.02)
with similar results for ACRarg (�0.24 ± 0.74 vs. �1.61 ±
0.78 ng/mL, respectively; P = 0.04). Neither AIRpot nor
ACRpot was different with GIP versus placebo infusion
in either the PI-CF group or non-CF group (Table 3;
Supplementary Fig. 4 A and B; Fig. 5, A and B). AGRarg

Table 1—Participant characteristics
PI-CF with AGT

PI-CF group with NGT Non-CF group with NGTGLP-1 group GIP group

n 16 16 4 4

Demographics
Male/female 8/8 7/9 2/2 2/2
Age (years) 27 (19–43) 23 (18–40) 24 (20–28) 28 (19–30)
BMI (kg/m2) 22 (19–34) 23 (19–32) 25 (18–27) 23 (21–27)
HbA1c (%) 5.8 (4.8–6.2) 5.6 (5.1–6.1) 5.5 (5.4–5.6) 5.2 (5.2–5.3)
HbA1c (mmol/mol) 40 (29–44) 38 (32–43) 37 (36–38) 33 (33–34)
FEV1 (% predicted) 80.5 (48–122) 89 (32–112) 92 (35–109) ND
FVC (% predicted) 90 (65–121) 90 (51–123) 93 (64–110) ND

OGTT profile
Fasting glucose (mg/dL) 93 (73–110) 91 (77–104) 89 (88–94) 88 (85–90)
1-h glucose (mg/dL) 220 (171–260) 213 (163–246) 138 (124–147) 139 (121–141)
2-h glucose (mg/dL) 154 (34–270) 144 (53–309) 89 (84–130) 91 (87–105)

Data are medians and ranges (minimum–maximum). FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; ND, not
done.
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was not different during GIP infusion than placebo infu-
sion in the PI-CF group (Table 3; Supplementary Fig. 4C)
and was greater during GIP than placebo infusion in the
non-CF group (P = 0.006) (Table 3; Supplementary Fig. 4D),
an effect explained by the decrease in fasting glucose levels
in control participants that is known to augment a-cell
function, particularly in the presence of GIP (25,26).
The change in AGRarg between GIP and placebo infu-
sion was less in participants with PI-CF than those with-
out -CF (16.2 ± 16.5 vs. 132.3 ± 9.4 pg/mL, respectively;
P = 0.03). AGRinh with GIP versus placebo infusion was

not different in either the PI-CF or non-CF groups (Table 3;
Supplementary Fig. 4 C and D). Neither the changes in acute
proinsulin responses (Table 3; Fig. 5, C and D) nor in PISRs
(Table 3; Fig. 5, E and F) were different between the PI-CF
and non-CF groups.

DISCUSSION

These results advance our understanding of the individual
contributions of GLP-1 and GIP to incretin action in
PI-CF. Individuals with PI-CF with AGT who received GLP-1
exhibited a marked augmentation in glucose-dependent
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Figure 2—Glucose and islet hormone concentrations in response to incretin infusion. Plasma glucose (A and B), insulin (C and D), and glu-
cagon (E and F) before and 30 min after infusion of incretin (lined box plots) or placebo (open box plots), and at the end of the �230 mg/dL
hyperglycemic clamp in participants with PI-CF and AGT in the GLP-1 (left) and GIP (right) groups. On the opposite y-axis (A and B),
M represents the requisite glucose infusion rate during the hyperglycemic clamp. Box plots give the median and interquartile range.
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insulin secretion evident by increased second-phase insu-
lin and C-peptide concentrations as well as intravenous
glucose tolerance. There was no effect of GLP-1 on meas-
ures of maximal b-cell secretory capacity, indicating
preservation of the reserve capacity for insulin secretion.
In contrast, individuals with PI-CF with AGT who re-
ceived GIP demonstrated no increase in second-phase
insulin or C-peptide concentrations. Moreover, the dif-
ferential responsiveness to GLP-1 and GIP in PI-CF
with AGT does not appear to be the result of dysregu-
lated glucose metabolism, because individuals with
PI-CF with NGT also exhibited impaired second-phase in-
sulin and C-peptide responses during GIP infusion. The
attenuated insulinotropic action of GIP suggests loss
of a key component of the incretin effect could con-
tribute to diabetes development in CF.

The effect of GLP-1 to augment second-phase insulin
secretion in PI-CF is like that reported in individuals with
type 2 diabetes (17,27). Patients with type 2 diabetes have
decreased b-cell sensitivity to GLP-1 compared with indi-
viduals without diabetes (19), but the former retain their
response to supraphysiologic concentrations of GLP-1 and
to pharmacologic agonists of the GLP-1 receptor. Inhibitors
of dipeptidyl peptidase-4 (DPP-4) prevent inactivation of
endogenous GLP-1 (and GIP) and can improve pancreatic
islet function in type 2 diabetes. In individuals with PI-CF
and AGT, our group has shown that 6 months’ treatment
with the DPP-4 inhibitor sitagliptin improved the rapidity

and magnitude of postprandial insulin secretion and
led to greater suppression of glucagon concentrations
(28). However, these islet effects did not translate into
an improvement in postprandial glucose tolerance with
sitagliptin in PI-CF (28), a benefit of DPP-4 inhibition
reported in most studies of patients with type 2 diabe-
tes (29,30). The hyperglucagonemia that characterizes
type 2 diabetes is not present in PI-CF, which features
reduced islet a-cell as well as b-cell secretory capacity
(9). Thus, more potent stimulation of insulin secretion
rather than suppression of glucagon may be necessary
to improve glucose tolerance in PI-CF. The results of
this study support that the improved glucose-dependent
regulation of islet function observed with the DPP-4 in-
hibitor sitagliptin in PI-CF (28) can be attributed to the
increased levels of intact GLP-1, rather than GIP, and
that use of GLP-1 agonists to further enhance GLP-1 ef-
fects may lead to enhanced insulin secretion and glucose
tolerance.

Basal glucagon secretion in individuals with PI-CF and
AGT was inhibited during GLP-1 infusion and stimulated
during GIP infusion—the expected effects for each incretin
hormone on pancreatic a-cell function. GLP-1 likely inhib-
its glucagon secretion indirectly through the paracrine
effects of insulin and somatostatin; in contrast, GIP
appears to directly stimulate glucagon secretion through
GIP receptors expressed on a-cells (7,25,26). However,
AGRs, which are lower in individuals with PI-CF than in

Table 2—Acute islet cell hormone responses during glucose-potentiated arginine testing in PI-CF with AGT
GLP-1 group (n = 16) GIP group (n = 16)

Incretin Placebo P value Incretin Placebo P value

AIR, mU/mL
AIRarg 11.6 (7.6–15.6) 14.5 (9.2–23.1) 0.004 8.6 (6.9–12.0) 14.3 (11.1–18.1) 0.01
AIRpot 44.7 (23.8–60.2) 43.4 (23.8–54.8) 0.61 26.0 (18.4–46.7) 32.1 (24.8–55.9) 0.001
AIRmax 49.3 (21.5–61.3) 48.6 (30.9–64.4) 0.61 38.7 (23.7–78.3) 41.3 (32.0–60.9) 0.02

AGR, pg/mL
AGRarg 29.0 (20.9–38.6) 31.3 (18.9–46.9) 0.74 40.0 (24.5–57.3) 29.0 (20.8–47.6) 0.21
AGRinh 18.5 (9.4–30.6) 27.3 (16.3–35.1) 0.07 25.3 (15.8–43.3) 27.5 (18.0–42.9) 0.57
AGRmin 18.9 (12.0–26.4) 26.1 (12.8–33.9) 0.21 22.4 (16.4–28.8) 28.4 (15.5–39.8) 0.49

ACR, ng/mL
ACRarg 0.49 (0.36–0.68) 0.61 (0.46–0.90) 0.002 0.40 (0.33–0.64) 0.69 (0.61–0.80) <0.001
ACRpot 2.04 (1.30–2.85) 2.04 (1.19–2.74) 0.57 1.69 (0.99–2.15) 1.62 (1.37–2.13) 0.09
ACRmax 1.90 (0.96–2.57) 2.07 (1.32–2.64) 0.06 1.85 (1.23–2.99) 2.16 (1.60–2.58) 0.07

APR, pmol/L
APRarg 3.5 (1.3–5.0) 3.5 (2.2–6.0) 0.20 2.1 (1.1–2.9) 3.4 (1.7–4.6) 0.04
APRpot 8.5 (5.5–11.8) 12.1 (6.1–14.6) 0.14 11.7 (7.4–14.3) 11.2 (6.7–14.6) 0.62
APRmax 10.8 (7.6–13.5) 11.5 (7.3–18.2) 0.44 11.5 (7.4–17.0) 11.9 (9.3–15.4) 0.53

PISR, %
PISRarg 2.06 (0.91–2.68) 1.68 (1.07–2.22) 0.61 1.37 (0.77–2.15) 1.56 (0.79–1.98) 0.80
PISRpot 1.12 (0.62–2.61) 1.54 (1.02–2.25) 0.23 2.32 (1.94–3.04) 1.96 (1.57–2.43) 0.03
PISRmax 1.70 (1.12–2.10) 1.57 (1.07–2.40) 0.57 1.88 (1.23–2.04) 1.91 (1.52–2.32) 1.00

Data are medians and interquartile ranges. Changes in acute islet cell hormone responses with incretin versus placebo infusion
were not different between the GLP-1 and GIP groups; the change in PISRpot with incretin versus placebo was different between
the GLP-1 and GIP groups (P = 0.03). AIR, acute insulin response; AGR, acute glucagon response; ACR, acute C-peptide
response; APR, acute proinsulin response; PISR, proinsulin secretory ratio; arg, arginine; pot, glucose-potentiated arginine; inh,
glucose-inhibited arginine; max, maximum arginine; min, minimum arginine.
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those without CF (9), were not increased during GIP infu-
sion, as was observed for AGRarg in our non-CF control
group. Thus, individuals with PI-CF may exhibit impair-
ment of both islet b- and a-cell responsiveness to GIP.

In type 2 diabetes, the insulinotropic effect of GIP
is markedly impaired with loss of GIP-induced augmen-
tation of second-phase insulin secretion (10,11,31,32).

Both GLP-1 and GIP signal through specific G-protein
coupled receptors that lead to stimulation of adenylate
cyclase and activation of protein kinase A and appear to
potentiate insulin secretion using the same downstream
intracellular machinery (33). Work in Zucker diabetic rats
suggested that hyperglycemia leads to decreased islet b-cell
GIP receptor expression and function as a mechanism for
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Figure 3—C-peptide, proinsulin, and proinsulin secretory ratios in response to GPA testing. Islet b-cell release of processed C-peptide
(A and B), unprocessed proinsulin (C and D), and PISRs (E and F) of the acute proinsulin and C-peptide responses to arginine under fasting
and �230 mg/dL hyperglycemic clamp conditions during incretin or placebo infusion, and again under �340 mg/dL hyperglycemic clamp
conditions without incretin or placebo infusion in participants with PI-CF and AGT in the GLP-1 (left) and GIP (right) groups. Data are re-
ported as mean ± SE or in box plots giving the median and interquartile range.
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loss of GIP augmentation of glucose-dependent insulin
secretion (12). Moreover, 4 weeks of near normaliza-
tion of glycemia in type 2 diabetes modestly improved
second-phase insulin and C-peptide levels during GIP
infusion (34), suggesting that this effect of hyperglycemia
is reversible.

In contrast, our study in PI-CF demonstrates impaired GIP
action to augment insulin secretion even in individuals with
NGT. This impaired GIP action in PI-CF is unlikely a conse-
quence of pancreatic exocrine disease, because a previous
study in individuals with chronic pancreatitis and exocrine
pancreatic insufficiency demonstrated intact augmentation
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Figure 4—Glucose and islet hormone levels in response to GIP infusion in NGT patients with PI-CF and control participants without CF.
Plasma glucose (A and B), insulin (C and D), and glucagon (E and F) levels before and 30 min after infusion of GIP (marked/filled diamonds)
or placebo (open diamonds), and at the end of the �230 mg/dL hyperglycemic clamp in participants with PI-CF and NGT (left) and in con-
trol participants without CF (right). On the opposite y-axis (A and B), M represents the requisite glucose infusion rate during the hypergly-
cemic clamp. Box plots give the median and interquartile range.
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of second-phase insulin and C-peptide responses during
infusion of GIP in those with normal to impaired glu-
cose tolerance (35). CFTR function has been proposed to
be important for islet b-cell, and possibly a-cell, function
(14), although a direct role of CFTR in insulin secretion via
expression in a subpopulation of b-cells or an indirect role
via expression in pancreatic ductal cells neighboring the
islet (36,37) is debated. Nevertheless, loss of CFTR function
appears to affect the amplification pathway for insulin se-
cretion (38), with our study providing in vivo evidence that
loss of CFTR function may affect nutrient-stimulated insu-
lin secretion at least in part through impaired GIP action.

Both reduced b-cell secretory capacity and hyperglyce-
mia can lead to disproportionately increased proinsulin se-
cretion (39,40) with increased demand on a compromised
functional b-cell mass for insulin secretion resulting in
b-cell recruitment of immature secretory granules contain-
ing an abundance of incompletely processed proinsulin
(41,42). Loss of CFTR function may impair proinsulin proc-
essing through effects on chloride ion flux important for
insulin granule acidification and activation of the pro-
hormone convertase enzymes that generate insulin and
C-peptide (43). We have previously demonstrated that indi-
viduals with PI-CF have elevated proinsulin secretory ratios
compared with individuals with pancreatic-sufficient CF and
non-CF control individuals (9), and that the disproportionate
increase in proinsulin secretion is related to the extent of
impaired glucose tolerance (3). Unlike a previous study of
GLP-1 infusion in which proinsulin secretory ratios in-
creased under conditions of glucose-potentiated argi-
nine stimulation (20), GLP-1 augmented second-phase
insulin secretion without disproportionately increasing
proinsulin release in this present study of PI-CF.

Importantly, both studies demonstrate a relationship
between the GLP-1–induced increase in second-phase in-
sulin concentrations and the underlying b-cell secretory
capacity. Interestingly, in participants with PI-CF and
AGT (but not those with NGT), infusion of GIP led to
disproportionately increased proinsulin secretion such
that GLP-1 induced an improvement relative to worsen-
ing proinsulin secretory ratio with GIP. These results
further suggest convergence of incretin signaling path-
ways and CFTR conductance on insulin processing and
secretion.

This study is limited by the exclusion of children, be-
cause our investigational new drug application required
study in adults aged $18 years. Thus, whether the b-cell
response to GIP may be preserved earlier in PI-CF, particu-
larly prior to significant reduction in b-cell secretory capac-
ity, remains uncertain. Additionally, because progressive
b-cell dysfunction is so common in PI-CF, identifying adults
with PI-CF and NGT according to our strict criteria of 1-h
OGTT glucose <155 mg/dL was challenging, resulting in a
small sample size for this cohort. Additionally, the four indi-
viduals with PI-CF and NGT were all receiving CFTR modu-
lator therapy. Although CFTR modulator therapy with
lumacaftor and ivacaftor has not been associated with im-
proved insulin secretion or glucose tolerance in F508del
homozygous individuals (44), and none of our participants
had a class III mutation associated with improved insulin
secretion after initiation of ivacaftor (45), we cannot ex-
clude that partial correction of CFTR function may have
been present in these individuals. In fact, one F508del ho-
mozygous individual with PI-CF and NGT receiving tezacaf-
tor and ivacaftor exhibited a GIP-induced increase in
second-phase insulin levels. Our study did not include

Table 3—Acute islet-cell hormone responses during glucose-potentiated arginine testing in patients with PI-CF with NGT
and in control participants

PI-CF group (n = 4) Non-CF control group (n = 4)

GIP Placebo P value GIP Placebo P value

AIR, mU/mL
AIRarg 14.2 (13.1–15.7) 15.3 (8.9–24.0) 0.68 17.5 (12.3–21.5) 35.7 (33.1–44.1) 0.02
AIRpot 82.1 (37.9–223.4) 38.3 (23.6–66.4) 0.29 143.0 (113.0–191.2) 97.7 (80.2–249.0) 0.82

AGR, pg/mL
AGRarg 39.4 (28.0–54.0) 33.8 (16.8–52.9) 0.51 69.9 (45.4–121) 44.0 (8.1–93.6) 0.006
AGRinh 28.0 (19.9–46.9) 29.3 (8.5–49.8) 0.40 30.5 (14.1–53.0) 36.1 (18.0–53.4) 0.80

ACR, ng/mL
ACRarg 0.95 (0.84–1.11) 0.95 (0.64–1.78) 0.56 0.79 (0.46–1.37) 2.25 (2.17–2.87) 0.03
ACRpot 3.34 (2.49–5.53) 1.97 (1.83–3.90) 0.05 4.48 (4.14–6.74) 5.03 (4.74–9.63) 0.24

APR, pmol/L
APRarg 2.9 (2.3–3.6) 2.9 (1.6–4.6) 0.84 3.1 (2.3–4.8) 5.9 (2.9–9.8) 0.34
APRpot 14.7 (11.8–19.0) 9.7 (7.7–13.9) 0.02 21.0 (13.5–45.2) 17.5 (10.0–29.3) 0.50

PISR, %
PISRarg 0.90 (0.72–1.09) 0.75 (0.70–0.89) 0.32 1.15 (1.02–1.49) 0.60 (0.39–1.11) 0.05
PISRpot 1.22 (1.07–1.44) 1.26 (1.02–1.49) 0.94 1.08 (0.66–3.17) 0.78 (0.61–1.12) 0.31

Data are reported as medians and interquartile ranges. AIR, acute insulin response; AGR, acute glucagon response; ACR, acute
C-peptide response; APR, acute proinsulin response; PISR, proinsulin secretory ratio; arg, arginine; pot, glucose-potentiated arginine;
inh, glucose-inhibited arginine.
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individuals with pancreatic-sufficient CF who retain partial
CFTR function and should be considered for inclusion as
control participants in future studies needed to determine

whether correction of CFTR function with highly effective
CFTR channel modulation may restore more favorable GIP
action on b-cell secretion.
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Figure 5—C-peptide, proinsulin, and proinsulin secretory ratios in response to GPA testing with GIP or placebo infusion in patients with
PI-CF and control participants without CF. Islet b-cell release of processed C-peptide (A and B), unprocessed proinsulin (C and D), and
PISRs (E and F) of the acute proinsulin and C-peptide responses to arginine under fasting and �230 mg/dL hyperglycemic clamp condi-
tions during GIP or placebo infusion in participants with PI-CF and NGT (left) and in control participants without CF (right). Data are re-
ported as mean ± SE or box plots giving the median and interquartile range.
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In conclusion, the incretin hormone GLP-1 improves
glucose-dependent b-cell insulin secretion in PI-CF with-
out depleting the availability of mature b-cell secretory
granules, whereas islet responsiveness to GIP is impaired
independently of hyperglycemia in PI-CF. Although there
is concern for the potential of GLP-1 receptor agonists to
exacerbate underlying gastroparesis and dysmotility in
CF, tolerability of low-dose, chronic administration has
been reported in at least one individual (46). Future stud-
ies should determine whether peptide and/or nonpeptidic
GLP-1 receptor agonists (47) may both be tolerated and
preserve or even restore islet b-cell function long term in
PI-CF to delay progression of AGT and/or treat CFRD.
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